Ultrasonic irradiation in a continuous flow batch-mode system for essential oil extraction and in vitro anti-inflammatory evaluation

Authors

    Asghar Hadi Darabad Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran | Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
    Masoud Rahimi Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
    Hasan Rafati * Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran h_rafati@sbu.ac.ir

Keywords:

Albumin protein denaturation, Anti-inflammatory, Response surface methodology (RSM), Thyme, Ultrasound-assisted extraction

Abstract

Thymus daenensis Celak, an endemic species of the Lamiaceae family, is widely used in traditional Persian medicine in Iran. In this study, a novel approach is presented to enhance the extraction of essential oil (EO) from dried aerial parts of the plant by integrating an online ultrasound-assisted extraction (UAE) technique into a continuous flow batch-mode system coupled with a Clevenger apparatus. A response surface methodology (RSM) was applied to evaluate the interactions among key variables—temperature, extraction time, and feed-to-solvent (F/S) ratio. The optimal extraction conditions were determined to be 30.06 °C, an F/S ratio of 14.52 g·L⁻¹, and an extraction time of 53.96 minutes. Under these conditions, the EO yield obtained via UAE was 10.51 mg·g⁻¹ of plant material, representing a 23.8% increase compared to the yield from the conventional method (8.49 mg·g⁻¹). Chemical composition analysis of the EO revealed that carvacrol (57.82%) and thymol (22.20%) were the predominant constituents. Ultrasound treatment also induced significant morphological alterations in the plant cell structure compared to traditional extraction techniques. Moreover, the EO extracted under optimal UAE conditions exhibited a notable anti-inflammatory effect, achieving 89% inhibition of albumin denaturation at a concentration of 900 µg·mL⁻¹.

References

1. Boukhatem MN, Boumaiza A, Nada HG, Rajabi M, Mousa SA. Eucalyptus globulus essential oil as a natural food preservative: Antioxidant, antibacterial and antifungal properties in vitro and in a real food matrix (orangina fruit juice). Applied Sciences. 2020;10:5581. doi: 10.3390/app10165581.

2. Isman MB. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides2020. 235-41 p.

3. Rodino S, Butu M. Herbal extracts-new trends in functional and medicinal beverages. Elsevier2019.

4. Nabavi SM, Marchese A, Izadi M, Curti V, Daglia M, Nabavi SFP. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food chemistry. 2015;173:339-47. doi: 10.1016/j.foodchem.2014.10.042.

5. Manconi M, Petretto G, D'Hallewin G, Escribano E, Milia E, Pinna R, et al. 'Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids and Surfaces B: Biointerfaces. 2018;171:115-22. doi: 10.1016/j.colsurfb.2018.07.021.

6. Pirbalouti AG, Karimi A, Yousefi M, Enteshari S, Golparvar AR. Diversity of Thymus daenensis Celak in central and west of Iran. Journal of Medicinal Plants Research. 2011;5:319-23.

7. Afshari V, Elahian F, Ayari Y, Yazdinezhad A, Mirzaei SA. Diversity and ecotypic variation in the antioxidant and antigenotoxic effects of Thymus kotschyanus Boiss & Hohen. Flavour and Fragrance Journal. 2016;31:429-37. doi: 10.1002/ffj.3333.

8. Elahian F, Garshasbi M, Mehri Asiabar Z, Gholamian Dehkordi N, Yazdinezhad A, Mirzaei SA. Ecotypic Variations Affected the Biological Effectiveness of Thymus daenensis Celak Essential Oil. Evidence-Based Complementary and Alternative Medicine. 2021;2021. doi: 10.1155/2021/6686558.

9. Ghaderi L, Moghimi R, Aliahmadi A, McClements D, Rafati H. Development of antimicrobial nanoemulsion‐based delivery systems against selected pathogenic bacteria using a thymol‐rich Thymus daenensis essential oil. Journal of applied microbiology. 2017;123:832-40. doi: 10.1111/jam.13541.

10. Orłowska M, Kowalska T, Sajewicz M, Pytlakowska K, Bartoszek M, Polak J, et al. Antioxidant activity of selected thyme (Thymus L.) species and study of the equivalence of different measuring methodologies. Journal of AOAC International. 2015;98:876-82. doi: 10.5740/jaoacint.SGE6-Orlowska.

11. Pirbalouti AG, Hashemi M, Ghahfarokhi FT. Essential oil and chemical compositions of wild and cultivated Thymus daenensis Celak and Thymus vulgaris L. Industrial Crops and Products. 2013;48:43-8. doi: 10.1016/j.indcrop.2013.04.004.

12. Aziz ZA, Ahmad A, Setapar SHM, Karakucuk A, Azim MM, Lokhat D, et al. Essential oils: extraction techniques, pharmaceutical and therapeutic potential-a review. Current drug metabolism. 2018;19:1100-10. doi: 10.2174/1389200219666180723144850.

13. Azmir J, Zaidul ISM, Rahman MM, Sharif KAUMA, Sahena F, Jahurul M, et al. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of food engineering. 2013;117:426-36. doi: 10.1016/j.jfoodeng.2013.01.014.

14. Hrnčič MK, Cör D, Verboten MT, Knez Ž. Application of supercritical and subcritical fluids in food processing2018. 59-67 p.

15. Kadam SU, Tiwari BK, O'Donnell CP. Application of novel extraction technologies for bioactives from marine algae. Journal of agricultural and food chemistry. 2013;61:4667-75. doi: 10.1021/jf400819p.

16. Alves Filho EG, Lima M, Silva L, Ribeiro P, Tiwari BK, Fernandes FN, et al. Green Ultrasound-Assisted Extraction of Bioactive Compounds from Button Mushrooms, Potatoes, and Onion Peels. ACS Food Science & Technology. 2021;1:1274-84. doi: 10.1021/acsfoodscitech.1c00153.

17. Balicki S, Pawlaczyk-Graja I, Gancarz R, Capek P, Wilk KA. Optimization of Ultrasound-Assisted Extraction of Functional Food Fiber from Canadian Horseweed (Erigeron canadensis L.). ACS omega. 2020;5:20854-62DO - 10.1021/acsomega.0c02181.

18. Piñeiro Z, Guerrero R, Fernández-Marin M, Cantos-Villar E, Palma M. Ultrasound-assisted extraction of stilbenoids from grape stems. Journal of agricultural and food chemistry. 2013;61:12549-56. doi: 10.1021/jf4030129.

19. Aktij SA, Taghipour A, Rahimpour A, Mollahosseini A, Tiraferri A. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics. 2020;108:106228. doi: 10.1016/j.ultras.2020.106228.

20. Lanjekar KJ, Rathod VK. Application of Ultrasound and Natural Deep Eutectic Solvent for the Extraction of Glycyrrhizic Acid from Glycyrrhiza glabra: Optimization and Kinetic Evaluation. Industrial & Engineering Chemistry Research. 2021. doi: 10.1021/acs.iecr.1c00862.

21. Banu KS, Cathrine L. General techniques involved in phytochemical analysis2015. 25-32 p.

22. Fernando GSN, Wood K, Papaioannou EH, Marshall LJ, Sergeeva NN, Boesch C. Application of an Ultrasound-Assisted Extraction Method to Recover Betalains and Polyphenols from Red Beetroot Waste. ACS Sustainable Chemistry & Engineering. 2021;9:8736-47. doi: 10.1021/acssuschemeng.1c01203.

23. Palmieri S, Pellegrini M, Ricci A, Compagnone D, Lo Sterzo C. Chemical composition and antioxidant activity of thyme, hemp and coriander extracts: A comparison study of maceration, soxhlet, UAE and RSLDE techniques. Foods. 2020;9:1221. doi: 10.3390/foods9091221.

24. Zahari NAAR, Chong GH, Abdullah LC, Chua BL. Ultrasonic-Assisted Extraction (UAE) Process on Thymol Concentration from Plectranthus Amboinicus Leaves: Kinetic Modeling and Optimization. Processes. 2020;8:322. doi: 10.3390/pr8030322.

25. Rahimi M, Shahhosseini S, Movahedirad S. Hydrodynamic and mass transfer investigation of oxidative desulfurization of a model fuel using an ultrasound horn reactor. Ultrasonics sonochemistry. 2019;52:77-87. doi: 10.1016/j.ultsonch.2018.11.006.

26. Rahimi M, Shahhosseini S, Movahedirad S. Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: an efficient diesel treatment by injection of the aqueous phase. Ultrasonics sonochemistry. 2017;39:611-22. doi: 10.1016/j.ultsonch.2017.05.033.

27. Belwal T, Dhyani P, Bhatt ID, Rawal RS, Pande V. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food chemistry. 2016;207:115-24. doi: 10.1016/j.foodchem.2016.03.081.

28. Eren I, Kaymak-Ertekin F. Optimization of osmotic dehydration of potato using response surface methodology. Journal of food engineering. 2007;79:344-52. doi: 10.1016/j.jfoodeng.2006.01.069.

29. Chary G, Dastidar M. Investigation of optimum conditions in coal-oil agglomeration using Taguchi experimental design. Fuel. 2012;98:259-64. doi: 10.1016/j.fuel.2012.03.027.

30. Kostrzewa D, Dobrzyńska-Inger A, Turczyn A. Optimization of supercritical carbon dioxide extraction of sweet paprika (Capsicum annuum L.) using response surface methodology. Chemical Engineering Research and Design. 2020;160:39-51. doi: 10.1016/j.cherd.2020.05.005.

31. Tušek AJ, Benković M, Valinger D, Jurina T, Belščak-Cvitanović A, Kljusurić JG. Optimizing bioactive compounds extraction from different medicinal plants and prediction through nonlinear and linear models. Industrial Crops and Products. 2018;126:449-58. doi: 10.1016/j.indcrop.2018.10.040.

32. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream, ILPB - Allured publishing corporation2007.

33. Mizushima Y, Kobayashi M. Interaction of anti‐inflammatory drugs with serum proteins, especially with some biologically active proteins. Journal of Pharmacy and Pharmacology. 1968;20:169-73. doi: 10.1111/j.2042-7158.1968.tb09718.x.

34. Asfaram A, Sadeghi H, Goudarzi A, Kokhdan EP, Salehpour Z. Ultrasound combined with manganese-oxide nanoparticles loaded on activated carbon for extraction and pre-concentration of thymol and carvacrol in methanolic extracts of Thymus daenensis, Salvia officinalis, Stachys pilifera, Satureja khuzistanica, and mentha, and water samples. Analyst. 2019;144:1923-34. doi: 10.1039/C8AN02338G.

35. Montgomery D. Design and analysis of experiments, Minitab manual2008.

36. Tavakolpour Y, Moosavi‐Nasab MAUNM, Haghighi‐Manesh S, Hashemi SMB, Mousavi Khaneghah A. Comparison of four extraction methods for essential oil from Thymus daenensis Subsp. Lancifolius and chemical analysis of extracted essential oil2017. e13046 p.

37. Vinatoru M, Mason T, Calinescu I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry. 2017;97:159-78. doi: 10.1016/j.trac.2017.09.002.

38. Kaderides K, Papaoikonomou LAUSM, Goula AM. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification. 2019;137:1-11. doi: 10.1016/j.cep.2019.01.006.

39. Chaar J, Mouchreck-Filho V, Breviglieri S, Cavalheiro E, Chierice G. Boiling temperatures and enthalpy changes of essential oils. Journal of thermal analysis and calorimetry. 2004;75:437-43. doi: 10.1023/B:JTAN.0000027130.37755.64.

40. Hashemi SMB, Khaneghah AM, Tavakolpour Y, Asnaashari M, Mehr HM. Effects of ultrasound treatment, UV irradiation and Avishan-e-Denaei essential oil on oxidative stability of sunflower oil. Journal of Essential Oil Bearing Plants. 2015;18:1083-92. doi: 10.1080/0972060X.2015.1039218.

41. Mahanta BP, Bora PK, Kemprai P, Borah G, Lal M, Haldar S. Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality. Food Research International. 2021;145:110404. doi: 10.1016/j.foodres.2021.110404.

42. Žnidarčič A, Mettin R, Dular M. Modeling cavitation in a rapidly changing pressure field-application to a small ultrasonic horn. Ultrasonics sonochemistry. 2015;22:482-92. doi: 10.1016/j.ultsonch.2014.05.011.

43. Carreira-Casais A, Otero P, Garcia-Perez P, Garcia-Oliveira P, Pereira AG, Carpena M, et al. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. International Journal of Environmental Research and Public Health. 2021;18:9153. doi: 10.3390/ijerph18179153.

44. Tutunchi PAURL, Hamishehkar H, Alizadeh A. Extraction of red beet extract with β-cyclodextrin-enhanced ultrasound assisted extraction: A strategy for enhancing the extraction efficacy of bioactive compounds and their stability in food modelsJO - Food chemistry. 2019;297:124994. doi: 10.1016/j.foodchem.2019.124994.

45. Böger BR, Salviato A, Valezi DF, Di Mauro E, Georgetti SR, Kurozawa LE. Optimization of ultrasound‐assisted extraction of grape‐seed oil to enhance process yield and minimize free radical formation. Journal of the Science of Food and Agriculture. 2018;98:5019-26. doi: 10.1002/jsfa.9036.

46. Rezvankhah A, Emam‐Djomeh Z, Safari M, Askari G, Salami M. Investigation on the extraction yield, quality, and thermal properties of hempseed oil during ultrasound‐assisted extraction: A comparative study. Journal of Food processing and preservation. 2018;42:e13766. doi: 10.1111/jfpp.13766.

47. Wen C, Zhang J, Zhang H, Dzah CS, Zandile M, Duan YAUMH, et al. Advances in ultrasound assisted extraction of bioactive compounds from cash crops-A review. Ultrasonics sonochemistry. 2018;48:538-49. doi: 10.1016/j.ultsonch.2018.07.018.

48. Al Kury LT, Abdoh A, Ikbariah K, Sadek B, Mahgoub M. In Vitro and In Vivo Antidiabetic Potential of Monoterpenoids: An Update. Molecules. 2022;27:182. doi: 10.3390/molecules27010182.

49. Kelleni MT. Early use of non-steroidal anti-inflammatory drugs in COVID-19 might reverse pathogenesis, prevent complications and improve clinical outcomes. Biomedicine & Pharmacotherapy. 2021;133:110982. doi: 10.1016/j.biopha.2020.110982.

50. Micallef J, Soeiro T, Jonville-Béra AP, of Pharmacology FS. Non-steroidal anti-inflammatory drugs, pharmacology, and COVID-19 infection. Therapies. 2020;75:355-62. doi: 10.1016/j.therap.2020.05.003.

51. Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, et al. Health beneficial and pharmacological properties of p-cymene. Food and Chemical Toxicology. 2021:112259. doi: 10.1016/j.fct.2021.112259ER -.

52. Marrelli M, Statti GA, Conforti F. Origanum spp.: an update of their chemical and biological profiles. Phytochemistry reviews. 2018;17:873-88. doi: 10.1007/s11101-018-9566-0.

53. Baser KHC. Aromatic biodiversity among the flowering plant taxa of Turkey. Pure and Applied Chemistry. 2002;74:527-45. doi: 10.1351/pac200274040527.

54. Abdelrasoul MA, Eid AR, Badawy ME. Preparation, characterizations and antibacterial activity of different nanoemulsions incorporating monoterpenes: in vitro and in vivo studies. Archives of Phytopathology and Plant Protection. 2020;53:310-34. doi: 10.1080/03235408.2020.1744977.

55. Laorenza Y, Harnkarnsujarit N. Carvacrol, citral and α-terpineol essential oil incorporated biodegradable films for functional active packaging of Pacific white shrimp. Food chemistry. 2021;363:130252. doi: 10.1016/j.foodchem.2021.130252.

56. Alam A, Singh V. Composition and pharmacological activity of essential oils from two imported Amomum subulatum fruit samples. Journal of Taibah University Medical Sciences. 2021;16:231-9. doi: 10.1016/j.jtumed.2020.10.007.

57. Leelaprakash G, Dass SM. Invitro anti-inflammatory activity of methanol extract of Enicostemma axillare2011. 189-96 p.

58. Marques FM, Figueira MM, Schmitt EFP, Kondratyuk TP, Endringer DC, Scherer R, et al. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology. 2019;27:281-9. doi: 10.1007/s10787-018-0483-z.

59. Veras HN, Araruna MK, Costa JGAUCHD, Kerntopf MR, Botelho MA, Menezes IR. Topical antiinflammatory activity of essential oil of Lippia sidoides Cham: possible mechanism of action. Phytotherapy research. 2013;27:179-85. doi: 10.1002/ptr.4695.

60. Bonjardim LR, Cunha ES, Guimarães AG, Santana MF, Oliveira MG, Serafini MR, et al. Evaluation of the anti-inflammatory and antinociceptive properties of p-cymene in mice. Zeitschrift für Naturforschung C. 2012;67:15-21. doi: 10.1515/znc-2012-1-203.

61. Boukhatem MNAU, H. DN, Sudha T, Bahlouli S, Kellou D, Benelmouffok AB, et al. In vitro antifungal and topical anti-inflammatory properties of essential oil from wild-growing thymus vulgaris (Lamiaceae) used for medicinal purposes in algeria: A new source of carvacrol. Scientia Pharmaceutica. 2020;88:33. doi: 10.3390/scipharm88030033.

Downloads

Published

2025-01-01

Submitted

2024-10-01

Revised

2024-10-11

Accepted

2024-10-13

How to Cite

Hadi Darabad, A., Rahimi, M., & Rafati, H. (2025). Ultrasonic irradiation in a continuous flow batch-mode system for essential oil extraction and in vitro anti-inflammatory evaluation. Phytonexus, 1(1), 1-18. https://phytonexus.org/index.php/phytonexus/article/view/3