Probing the scent code: comparative metabolite profiling of essential oils in two Lavandula species across phenological stages

Authors

    Mansoureh Tavan * Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran mansuretavan@yahoo.com
    Maryam Moradi Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

Keywords:

Aromatic plant, Lamiaceae, Lavender, Linalool, Phenology, Vegetative stage

Abstract

The genus Lavandula (Lamiaceae) comprises aromatic plants widely cultivated for their essential oils, which are valued for their applications in perfumery, cosmetics, and herbal medicine. This study presents a comparative metabolomic analysis of essential oils from Lavandula angustifolia Mill. and Lavandula × intermedia Emeric ex Loisel. at two phenological stages—vegetative and flowering—to decode their scent profiles and underlying chemical divergence. Gas chromatography–mass spectrometry (GC-MS) revealed significant qualitative and quantitative differences in oil yield and composition between species and developmental stages. L. angustifolia exhibited a floral aroma chemotype dominated by linalool (40.7–50.2%) and linalyl acetate, particularly during flowering, whereas L. × intermedia displayed a sharper, medicinal profile characterized by 1,8-cineole (up to 52.6%) and borneol, especially in the vegetative phase. Multivariate analyses (hierarchical clustering and PCA) confirmed clear chemotypic segregation based on species and developmental stages, identifying distinct metabolic signatures: a linalool-rich chemotype in L. angustifolia and a 1,8-cineole/borneol-rich chemotype in L. × intermedia. Oxygenated monoterpenes were the dominant compound class in all samples, with the highest abundance in flowering L. angustifolia (91.7%). Developmental transitions notably influenced metabolite profiles, indicating transcriptional regulation of terpene biosynthesis. These findings provide insights into species-specific secondary metabolism and support targeted cultivation strategies for perfumery, cosmetics, and medicinal applications based on genotype × environment × development interactions.

References

1. Massoud RI, Bouaziz M, Abdallah H, Zeiz A, Flamini G, El Dakdouki MH. Comparative study on the chemical composition and biological activities of the essential oils of Lavandula angustifolia and Lavandula x intermedia cultivated in Lebanon. ACS omega. 2024;9(28):30244-55. doi: 10.1021/acsomega.4c00313.

2. Jini D. Biological applications of essential oil. 2023:361-80. doi: 10.1002/9781119829614.ch16.

3. Zuzarte M, Salgueiro L. Essential oils chemistry. Bioactive essential oils and cancer. 2015:19-61.

4. Habán M, Korczyk-Szabó J, Čerteková S, Ražná K. Lavandula species, their bioactive phytochemicals, and their biosynthetic regulation. International Journal of Molecular Sciences. 2023;24(10):8831.

5. Wang J, Liu X, Zhang M, Liu R. The mitochondrial genome of Lavandula angustifolia Mill.(Lamiaceae) sheds light on its genome structure and gene transfer between organelles. BMC genomics. 2024;25(1):929.

6. Koulivand PH, Khaleghi Ghadiri M, Gorji A. Lavender and the nervous system. Evidence‐Based Complementary and Alternative Medicine. 2013;2013(1):681304.

7. Cavanagh HMA, Wilkinson JM. Biological activities of lavender essential oil. Phytotherapy Research. 2002;16(4):301-8. doi: 10.1002/ptr.1103.

8. Boelens MH. Chemical and sensory evaluation of Lavandula oils. Perfumer and Flavorist. 1995;20:23-.

9. Perović AB, Karabegović IT, Krstić MS, Veličković AV, Avramović JM, Danilović BR, et al. Novel hydrodistillation and steam distillation methods of essential oil recovery from lavender: A comprehensive review. Industrial Crops and Products. 2024;211:118244. doi: 10.1016/j.indcrop.2024.118244.

10. Venskutonis PR, Dapkevicius A, Baranauskiene M. Composition of the essential oil of Lavender (Lavandula angustifolia Mill.) from Lithuania. Journal of essential oil research. 1997;9(1):107-10.

11. Ristorcelli D, Tomi F, Casanova J. 13C‐NMR as a tool for identification and enantiomeric differentiation of major terpenes exemplified by the essential oil of Lavandula stoechas L. ssp. stoechas. Flavour and fragrance journal. 1998;13(3):154-8.

12. Skoula M, Abidi C, Kokkalou E. Essential oil variation of Lavandula stoechas L. ssp. stoechas growing wild in Crete (Greece). Biochemical Systematics and Ecology. 1996;24(3):255-60.

13. Valentini G, Arnold N, Bellomaria B. Étude chimique comparative des huiles essentielles de quatre populations de Lavandula stoechas L. subsp. stoechas spontanées de Chypre. Plantes medicinales et phytotherapie. 1993;26(4):289-99.

14. Garcia-Vallejo MC, Garcia-Vallejo I, Velasco-Negueruela A. Essential oils of genus Lavandula L. in Spain. 1990.

15. Rathore S, Kumar R. Essential oil content and compositional variability of Lavandula species cultivated in the mid hill conditions of the western himalaya. Molecules. 2022;27(11):3391.

16. British P. British pharmacopoeia. London: H.M.S.O.; 1993. 1-681 p.

17. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 5 online ed. Gruver, TX USA: Texensis Publishing. 2017:46-52.

18. Gershenzon J, McConkey ME, Croteau RB. Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiology. 2000;122(1):205-14. doi: 10.1104/pp.122.1.205.

19. Sohn S-I, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, Balaji S, et al. Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. Frontiers in Plant Science. 2022;13:942789.

20. Açıkgöz MA, Kara ŞM. Morphogenetic, ontogenetic and diurnal variability in content and constituents of bitter fennel (Foeniculum vulgare Miller var. vulgare) essential oil. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2020;23(1):127-34.

21. Uyanik M, Gurbuz B. Effect of Ontogenetic Variability On Essential Oil Content and Its Composition in Lemon Balm (Melissa officinalis L.)/Ogulotu (Melissa officinalis L.)'nda Uçucu Yag Miktari ve Bilesenleri Üzerine Ontogenetik Varyabilitenin Etkisi. Journal of Tekirdag Agricultural Faculty. 2015;12(1):91.

22. Arabacı O, Tokul HE, Öğretmen NG, Bayram E. The effect of diurnal variability on yield and quality in naturally grown Coridothymus capitatus L. genotypes. 2015.

23. Oliveira MJ, Campos IF, Oliveira CB, Santos MR, Souza PS, Santos SC, et al. Influence of growth phase on the essential oil composition of Hyptis suaveolens. Biochemical Systematics and Ecology. 2005;33(3):275-85. doi: 10.1016/j.bse.2004.10.001.

24. Badi HN, Yazdani D, Ali SM, Nazari F. Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Industrial crops and products. 2004;19(3):231-6.

25. Chegeni R, Zarinkamar F, Rezayian M, Nazari M. Effects of growth stage on essential oils and gene expression of terpene synthases in Mentha aquatica L. Microbiology, Metabolites and Biotechnology. 2022;5(2):103-13.

26. Sellami IH, Maamouri E, Chahed T, Wannes WA, Kchouk ME, Marzouk B. Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.). Industrial Crops and Products. 2009;30(3):395-402.

27. Abraham EJ, Kellogg JJ. Chemometric-guided approaches for profiling and authenticating botanical materials. Frontiers in Nutrition. 2021;8:780228. doi: 10.3389/fnut.2021.780228.

28. Rai AK, Khan S, Kumar A, Dubey BK, Lal RK, Tiwari A, et al. Comprehensive metabolomic fingerprinting combined with chemometrics identifies species-and variety-specific variation of medicinal herbs: an Ocimum study. Metabolites. 2023;13(1):122. doi: 10.3390/metabo13010122.

29. Wells R, Truong F, Adal AM, Sarker LS, Mahmoud SS. Lavandula essential oils: a current review of applications in medicinal, food, and cosmetic industries of lavender. Natural Product Communications. 2018;13(10):1934578X1801301038.

30. Api AM, Belsito D, Bhatia SAUBM, Calow P, Dagli ML, Dekant W, et al. RIFM fragrance ingredient safety assessment, Linalyl acetate, CAS Registry Number 115-95-7. Food and Chemical Toxicology. 2015;82:S39-S48. doi: 10.1016/j.fct.2015.01.010.

31. Bickers D, Calow P, Greim H, Hanifin JM, Rogers AE, Saurat JH, et al. A toxicologic and dermatologic assessment of linalool and related esters when used as fragrance ingredients. Food and chemical toxicology. 2003;41(7):919-42.

32. de Moura Linck V, da Silva AL, Figueiró M, Piato AL, Herrmann AP, Birck FD, et al. Inhaled linalool-induced sedation in mice. Phytomedicine. 2009;16(4):303-7. doi: 10.1016/j.phymed.2008.08.001.

33. Peana AT, D'Aquila PS, Panin F, Serra G, Pippia P, Moretti MDL. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine. 2002;9(8):721-6.

34. Ehrnhöfer-Ressler MM, Fricke K, Pignitter M, Walker JM, Walker J, Rychlik M, et al. Identification of 1, 8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a Salvia officinalis L. infusion using human gingival fibroblasts. Journal of agricultural and food chemistry. 2013;61(14):3451-9.

Downloads

Published

2025-01-01

Submitted

2024-10-01

Revised

2024-10-11

Accepted

2024-10-13

How to Cite

Tavan, M., & Moradi, M. (2025). Probing the scent code: comparative metabolite profiling of essential oils in two Lavandula species across phenological stages. Phytonexus, 1(1), 1-12. https://phytonexus.org/index.php/phytonexus/article/view/6